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Abstract. The Kondo effect assumes a central role in condensed matter physics.

It describes the exchange scattering of electrons with a localized moment and occurs

in a wide range of settings from rare earth-based intermetallics to nanotubes and

semiconductor heterostructures. A conceptually simple extension of the model, known

as the two-channel Kondo model, can give rise to singular scattering and the formation

of an unconventional metal. Although the observation of the standard Kondo effect

has become ubiquitous, its two-channel counterpart has been proven difficult to realize.

This article reviews attempts, challenges, and successes in realizing the two-channel

Kondo effect in artificial structures and real quantum materials.

Keywords — Kondo physics, multi-channel Kondo effect, quantum dots, non-
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1. Introduction

An important motor of quantum matter research is the need for novel materials for

future technological applications. Equally important is the effort to understand the

properties of quantum matter in terms of a few comprehensive principles underlying the

observed diversity across different material classes. General arguments, e.g., indicate

that 4f electrons are more localized than 3d, 5f , or 4d electrons. The interplay between

continuous itinerant and local degrees of freedom is a recurrent theme in condensed

matter research [1]. This interrelationship has commonly been associated with heavy-

electron materials involving lanthanide or actinide ions like Cerium, Ytterbium, or

Uranium [2, 3, 4]. There is, however, mounting evidence that also other materials’

classes like the cuprates, or iron pnictides are located at the border between electron

localization and itinerancy [5, 6, 7]. This proximity to localization appears to be

intimately related to the strange metal behavior which has been observed in many

unconventional superconductors above their superconducting transition temperature Tc
[8, 9, 10]. In conventional metals the resistivity (ρ) at sufficiently low temperature (T )

displays a quadratic-in-T dependence. This universal low T behavior is a feature of the

Landau-Fermi (or simply Fermi) liquid fixed point. In contrast to conventional metals,

the T -dependence of the strange metal phase is characterized by a linear-in-T behavior

over a wide T region [11]. This behavior is so prevalent that metals which do not

display the Fermi liquid phenomenology are commonly known as non-Fermi liquids. The

common feature of all metallic non-Fermi liquids is the existence of gapless excitations

which do not resemble electrons or holes. This is contrary to the Fermi liquid, where

quasi-particles, i.e., quasi-electrons or -holes remain well defined. The Fermi liquid is

adiabatically connected to the free electron gas. The strange metal phase appears to be a

particular kind of non-Fermi liquid behavior. The similarities between the strange metal

phase in the cuprate, pnictide, selenide, and some of the rare earth-based heavy-electron

superconductors, as well as the overall comparability of the phase diagrams, e.g., the

proximity to magnetism and significance of charge localization, is striking and seems to

suggest a common origin across different materials’ classes [12, 13]. This observation

has motivated a search for routes to non-Fermi liquid behavior.

In the context of lanthanide-based heavy-electron compounds, it is well established

that their low T properties are a result of Kondo physics and its interplay with the

Ruderman-Kittel-Kasuya-Yosida or RKKY exchange interaction [14, 15, 16]. The

competition between the two can also lead to unconventional quantum criticality which,

in this context, arises from a critical Kondo destruction and often occurs at the border

of magnetism in these heavy-electron systems [17].

The distinguishing feature of Kondo physics is the scattering of electrons and holes

at a localized, spin-1/2 moment [2]. This leads to the formation of a Fermi liquid state

as T −→ 0 with very strong potential scattering [18]. In a more realistic setting, the

degeneracy of the local f (l = 3) or d (l = 2) eigenstates, reduced by spin-orbit coupling

and crystalline electric field effects, should be taken into account. Moreover, more than
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one conduction band possibly could couple to the local moment. As a result, a higher-

spin multi-channel Kondo model may arise as the proper low-energy model [19].

Under very special circumstances, overscreening of the local moment, see Sec. 2.2,

might occur in which case non-Fermi liquid behavior will emerge at sufficiently low T

[19, 20]. For a quantum spin of size 1/2, this situation can occur in the two-channel

Kondo (2CK) model and constitutes the conceptionally perhaps simplest route to a

singular metallic state with non-Fermi liquid behavior.

A periodic lattice of 2CK scattering centers, i.e., a 2CK lattice, is expected to

display features reminiscent of the strange metal phase [21]. This reasoning is further

corroborated by the strange metal behavior arising near quantum criticality in the 4f

electron-based intermetallics, which is driven by a competition of Kondo and RKKY

physics. The simplest model that captures such a competition is the two-impurity Kondo

model [22]. Its quantum critical point turns out to be equivalent to the 2CK fixed point.

This indicates that realizations of the 2CK effect may shed light on how Fermi liquid

states give way to strange metal behavior and ultimately promote novel phases, like e.g.

unconventional superconductivity. Despite its conceptual simplicity, however, the 2CK

effect is rather fragile against perturbations and has proven quite difficult to realize.

In this article, I review the 2CK problem and its possible realizations ranging from

artificial quantum devices to condensed matter systems. The article concludes with a

brief overview of the most recent developments.

2. Kondo Physics

2.1. The single-channel Kondo effect

The scattering of electrons at a magnetic moment S localized at position r = 0, formed

e.g. by a transition metal or lanthanide ion immersed in a metal, can be described by

Haniso

K =
∑
n,k,σ

εnkc
†
n,k,σcn,k,σ + J

‖
KS

z
∑
n

szn(r = 0)

+
J⊥K
2

∑
n

(
S+s−n (r = 0) + S−s+

n (r = 0)
)
. (1)

Here, S is exchange coupled to the local (r = 0) spin density, s(r = 0) =
(
sx, sy, sz

)
(r =

0), of n conduction bands of dispersion εik (i = 1, . . . , n) via longitudinal and transversal

Kondo exchange couplings J
‖
K and J⊥K respectively. In the case J

‖
K = J⊥K and for a single

conduction band (n = 1), the model simplifies to the spin-isotropic Kondo model

HK =
∑
n,k,σ

εnkc
†
n,k,σcn,k,σ + JK

∑
n

∑
k,k′,σ,σ′

S · σnσ,σ′c
†
n,k,σcn,k′,σ′ . (2)

For JK > 0, the exchange interaction favors antiferromagnetic alignment while JK < 0

is a ferromagnetic coupling. In Eq. (2), σ is a vector formed by the Pauli matrices

and c†n,k,σ(cn,k,σ) creates (destroys) a conduction electron state in band n with lattice

momentum k and spin projection σ. The resistivity ρ(T ) that follows from the Kondo

Hamiltonian displays a peculiar T dependence which is a reflection of the T dependence
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Figure 1. (a) The resistivity ρ(T ) of a magnetic impurity imbedded in a metal displays

a characteristic temperature (T ) dependence due to dynamic spin-flip scattering. At

high T , the spin is essentially free. Well below a dynamically generated low-energy

scale, TK , the system of impurity and electrons forms a many-body singlet. As a

result, ρ(T ) features an enhanced residual (T = 0) resistivity plus (T/TK)2 corrections.

Around the crossover scale TK , strong spin-flip scattering leads to an increasing ρ with

decreasing T . (b) Perturbative contributions to the scattering T-matrix in 2nd order of

the exchange coupling JK . The two diagrams shown yield a logarithmic contribution in

energy and form the one-loop contributions which contribute to the scaling equation up

to order J2
K . (c) The two diagrams are of order J3

K and form the two-loop contributions

for the 2CK effect.

of the scattering T-matrix (T ) of the conduction electrons. The T-matrix relates the free

conduction electron Green function (g), which describes the propagation of electrons in

the absence of the local moment, to the full one (G) via G = g + gT g. The scattering

rate, which determines ρ(T ), in turn is directly related to the absolute values of matrix

elements of T (in a basis of initial and final states).

Starting from high T , the scattering rate decreases with decreasing T as is common

for metals, before increasing again near some characteristic energy, called the Kondo

temperature (TK), see Figure 1(a). This energy scale is dynamically generated and

characterizes the crossover from the local moment regime at high T , where the spin

susceptibility is Curie-like to a strongly correlated regime, where the local moment is

confined to a many-body singlet formed with the conduction electrons. This regime is

characterized by a Pauli-like spin susceptibility with an enhanced density of states at the

Fermi energy that scales with 1/TK . This behavior is reminiscent of a Fermi liquid, the

generic ground state behavior of most ordinary metals and which is characterized by the

existence of well-defined quasiparticles [23]. It is a distinctive feature of the Kondo effect

that an adequate description of the crossover from the local moment behavior to the

low T regime is non-trivial. Indeed, it has long been recognized that the application of

perturbation theory to the Kondo Hamiltonian leads to divergent results [24]. This can

be seen by analyzing the two Feynman diagrams shown in Figure 1(b) which represent

contributions to T in 2nd order perturbation theory in terms of the exchange coupling JK .

The black continuous line in these diagrams represents conduction electron states while

the dashed line symbolizes the possible states of the local moment. A dot symbolizes

the interaction; a diagram with two dots is thus proportional to J2
K .
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An important feature of the Kondo effect is its quantum mechanical nature that

is reflected in the behavior of the two processes shown in Figure 1(b). It involves

electrons (upper diagram) and holes (lower diagram). The sum of the two diverges

logarithmically as the energy of the scattering electron approaches the Fermi energy [2].

This divergence is a consequence of the existence of a local quantum algebra, encoded

in the commutators for the SU(2) generators S+, S−, and Sz of the local moment S

and its coupling to a continuous bath of fermion states. Similar divergencies occur in

all higher orders of perturbation theory and signal the instability of the starting point,

i.e., the weak coupling fixed point with JK ≈ 0. As a result, the system dynamically

generates a low-energy scale, the Kondo temperature

TK = D e−1/N0JK , (3)

where D is the half-bandwidth of the conduction electron band and N0 is its density of

states at the Fermi energy.

This result motivated the perturbative renormalization group (RG) treatment of the

Kondo problem and lead to the poor man’s scaling equation for the effective exchange

coupling [25, 26]

dJ

dD
= −N0

J2

D
, (4)

which relates changes D → D + dD in the cutoff to those in the exchange coupling J

while leaving T (ε) for energies below the reduced cutoff invariant. Equation (4) is based

on the diagrams shown in Figure 1(b). This creates a manifold of Kondo systems with

identical low-energy behavior, parameterized by

J(D) =
JK

1−N0JK ln
(D(JK)

D

) , (5)

where JK is the original exchange coupling and D(JK) the associated band cutoff.

The right-hand side of Equation (4) only includes terms up to second order in J

which is a reflection of its perturbative origin. Note, that the linear-in-J term vanishes.

This implies that the Kondo exchange coupling is marginally irrelevant for J < 0 and

marginally relevant for J > 0. It follows from Equation (5) that for ferromagnetic

couplings (JK < 0) J → 0 as D → 0 while J becomes singular as D approaches TK for

JK > 0, i.e. antiferromagnetic couplings. This divergence for JK > 0 is artifical and

signals that an inclusion of higher-order terms beyond the diagrams shown in Figure

1(b) is necessary [27].

A proper incorporation of higher order terms was ultimately accomplished by the

development of K. Wilson’s RG which showed that J(D)→∞ as D → 0 is indeed the

correct behavior: The ground state of the JK > 0 Kondo problem is that of a many-

body singlet. Moreover, the excitations on top of the ground state are of fermionic

nature [28]. In the low-energy limit, the Kondo impurity only acts as a very strong

potential scatterer close to its unitary limit, where the conduction electrons experience

a scattering phase shift of π/2 in the Kondo limit [18].
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The poor man’s scaling approach also established an equivalence between the

JK > 0 Kondo model and the one-dimensional Ising model with periodic boundary

conditions and a ferromagnetic long-ranged interaction that falls off quadratically with

distance along the ring [25, 26]. Integrating over domains in the partition function of

this long-ranged Ising model leads to an equivalent representation in terms of kinks and

anti-kinks associated with the domain walls in terms of the Ising spin representation.

Thus, the Kondo model is also equivalent to a one-dimensional Coulomb gas with a

logarithmic interaction among the + (kink) and − (anti-kink) charges [29].

One of the attractive features of the Kondo effect is that it constitutes a

phenomenon of strong electron correlations that is located right at the verge of

solvability. The problem can be tackled by a number of methods, including essentially

exact approaches, like conformal field theory and Bethe ansatz solutions [30, 31, 32,

33, 34], that pertain in certain limits. For a special and non-universal value of the

longitudinal exchange coupling J
||
K , the anisotropic Kondo model can be mapped to

a resonant level model, i.e., a non-interacting model with resonant tunneling at the

Fermi energy [35]. This particular limit of the anisotropic Kondo model is known as the

Toulouse point, at which the model can be solved straightforwardly.

The generalization of Equation (4) to the anisotropic Kondo model, where J⊥K 6= J
‖
K ,

yields dJ‖ = −N0(J⊥)2/D and dJ⊥ = −N0J
‖J⊥/D. These two equations imply that

(J‖/J⊥)2 → 1 as the strong-coupling fixed point is approached, i.e., the low T fixed

point displays symmetry restoration [36].

The Kondo effect is an example of the richness that arises from the coupling of a

discrete degree of freedom to a gapless bath of quantum fields. For it to form, a local

quantum algebra, e.g. a local SU(2) associated with the localized moment, is required,

which, in combination with the Fermi edge of the conduction electron bath, leads to

the characteristic logarithmic divergencies in the perturbative treatment underlying

Equations (3) and (4).

Note, that the inclusion of the cubic term in Equation (4) would automatically

imply the existence of a critical, non-zero J? <∞ at which

dJ

dD

∣∣∣∣∣
J?

= 0. (6)

This would imply the existence of a further fixed point in addition to the weak-coupling

(J = 0) and strong-coupling (J → ∞) fixed points. Moreover, non-Fermi liquid-like

powerlaw behavior would be expected in the vicinity of J?. Whether such a finite-

coupling fixed point is an artefact of the perturbative treatment or if it could arise and

if so, under which conditions, has been first analyzed by Noziéres and Blandin [19] and

independently by Zawadowski [37].

2.2. The two-channel Kondo effect

The more realistic model of a magnetic moment S of size S, exchange coupled to n

conduction bands via anti-ferromagnetic couplings, Equation (1), allows for a much
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richer behavior than the Kondo model HK of Equation (2). Its properties were analyzed

in detail in [19]. A stability analysis of the strong-coupling fixed point shows that three

qualitatively different cases may occur, depending on the ratio of n and S.

The strong-coupling fixed point for n = 2S is a singlet state that is formed by the

local moment and the conduction electrons. This leads to a pure potential scatterer

similar to the situation in the standard Kondo model, Equation (2), discussed above.

This is the case of perfect screening.

Underscreening occurs if the size of the local moment exceeds n/2. In that case, the

ground state near the strong-coupling fixed point is characterized by a local moment with

a reduced effective spin Seff = S − n/2 provided the initial Kondo exchange coupling

JK is of sufficient strength. As it turns out, the conduction electrons experience a

ferromagnetic effective exchange interaction with this Seff. It then follows from Equation

(5) that this effective exchange coupling Jeff tends to zero at lower and lower energies

analogous to the behavior found in the ferromagnetic Kondo model. As a result, the

strong-coupling fixed point with an asymptotically decoupled Seff is stable.

In the opposite case, where n > 2S, the conduction electrons overcompensate the local

moment and generate a local effective moment Seff = n/2−S. In this case, the effective

exchange interaction between Seff and the conduction electron bands turns out to be

antiferromagnetic. From Equation (5), we thus conclude that this effective exchange

coupling Jeff will scale to larger values as D is being reduced. In terms of the original

coupling JK this corresponds to an effective reduction, as Jeff ∼ 1/JK . The strong-

coupling fixed point in the overscreened case is thus unstable, but so is the weak coupling

fixed point [20]. Noziéres and Blandin thus concluded that in this case the system flows

to an intermediate coupling fixed point characterized by a critical effective coupling J?

that can be described by the scaling equation [19]

dJ

dD
= −N0

J2

D
+ nN2

0

J3

D
, (7)

where the cubic contribution originates from the processes encoded in the diagrams

shown in Figure 1(c). The critical value J? = 1/nN0, obeying dJ
dD
|J? = 0, marks the

intermediate coupling fixed point. The overall correctness of this conclusion and the

underlying stability analysis has been confirmed e.g. through numerical renormalization

group (NRG) calculations [38].

The physical properties of the critical fixed point at J? are fundamentally different

from those of the Fermi liquid fixed point that resides at strong coupling J → ∞. Its

critical features are reflected in the scaling behavior of physical quantities in its vicinity,

i.e., at energies and temperatures well below the Kondo temperature TK . In Table

1, a comparison is made between the physical quantities near the one-channel strong-

coupling (S = 1/2, n = 1) and the 2CK (S = 1/2, n = 2) fixed points. Most notably in

this list might be the residual T = 0 impurity entropy S(T = 0) = ln
√

2 associated with

the 2CK fixed point [39, 40, 41, 42]. This impurity entropy is defined as the difference

of entropies of the full Hamiltonian and the conduction electron contribution alone.

Likewise, the specific heat behavior quoted in Table 1 refers to the impurity specific
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heat which is defined in an analogous manner. The T = 0 limit of ρ(T ) for the 2CK

model has been obtained using conformal field theory (CFT) methods [30, 31]. In

Physical quantity 1CK effect 2CK effect

C/T ∼ 1/TK ∼ ln(T/TK)

S(T = 0) 0 1
2

ln (2)

χ(T � TK) ∼ 1/TK ∼ ln(T/TK)

ρ(T )− ρ(0) ∼
(

1
TK

)2 ∼
(

1
TK

)1/2

Table 1. A comparison of the one- vs 2CK effect: low T specific heat contribution

divided by T (also known as the γ coefficient), residual entropy, low T spin

susceptibility and low T resistivity.

contrast to the single-channel Kondo case which leads to strong elastic scattering in the

T = 0 limit, multi-channel Kondo impurities generate inelastic scattering even in the

T = 0 limit [18, 41].

As it turns out, the Toulouse limit of the one-channel Kondo model can be

generalized to its two-channel counterpart [43] but extra effort is required to obtain the

correct behavior of physical quantities like e.g. the spin susceptibility and the specific

heat [44]. This particular case of a 2CK model is also known as the Emery-Kivelson

point.

The CFT description of the 2CK fixed point also establishes which couplings would

drive the system away from the fixed point, i.e., which perturbations are relevant. As the

critical point arises out of a competition of two channels which independently attempt

to screen the local moment, a perfect frustration between these channels is needed to

reach the multi-channel Kondo fixed point. An imbalance in either the dispersion εnk of

the different bands or the coupling strength JK with the local moment will ultimately

favor one channel over the other. Thus, a channel anisotropy constitutes a relevant

perturbation at the intermediate fixed point. Another vital requirement is that no direct

coupling between the different channels can exist except through the local moment itself,

if the 2CK fixed point is to be reached [42, 45].

In spite of the fact that the 2CK effect is conceptually possibly the simplest

route to a metallic non-Fermi liquid ground state, the requirements necessary to

reach this fixed point put severe constraints on possible physical realizations. This

is in stark contrast to the one-channel Kondo effect that has been realized in a

great variety of systems including semiconductor heterostructures, nanotubes, single

molecules, molecules adsorbed on surfaces, magnetic impurities in metals.
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3. The Kondo Effect in Quantum Dots and Nanostructures

3.1. Artificial atoms: quantum dots, molecular junctions, nanotubes

The possibility of realizing Kondo scattering in nanostructures or ’artificial atoms’,

like quantum dots and molecular junctions was first pointed out in Refs. [46, 47].

The observation of Kondo physics in quantum dots was later accomplished by several

groups [48, 49, 50]. Subsequently, the engineering of Kondo physics in more invovled

nanostructures and single-molecule transistors was achieved [51, 52]. For a review of

Kondo physics in quantum dots, see e.g. [53].

Two important energy scales of quantum dots that play a central role in realizing

Kondo scattering are the energy level spacing ∆ and the charging energy EC . A non-

vanishing ∆ is a consequence of the electron confinement within the dot. For energies

that are small compared to ∆, quantum dots can be modeled in terms of the single-level

Anderson model (Figure 2),

HAM =
∑
σ

(
εd + eVG

)
d†σdσ + Ud†↑d

†
↓d↓d↑

+
∑
λ=S,D

∑
k,σ

ελ,kc
†
λ,k,σcλ,k,σ +

∑
λ,k,σ

(
tλc
†
λ,k,σdσ + h.c.

)
, (8)

where U is a measure of the Coulomb repulsion between the dot electrons with spin

projection ↑ and ↓ while εd is the energy of the single-particle level closest to the Fermi

energy EF of the source (λ = S) and drain (λ = D). The gate voltage VG allows to tune

this energy. The dispersion in lead λ is given by ελ,k and tλ is the coupling strength

between states in lead λ and the dot. For simplicity, this coupling is taken to be local and

spin-independent. The charging energy EC is defined as the energy difference between

the states with n + 1 and n electrons on the dot: EC = E(n + 1) − E(n). From HAM,

one finds

EC = E(n+ 1)− E(n) = εd − eVG + nU (9)

(for tλ = 0). This expression is easily generalized to a quantum dot with several levels.

In the Coulomb blockade regime, charge transfer between the leads and the dot

is energetically suppressed. As a result, real charge fluctuations can essentially be

neglected and a wide parameter range in ε, U , and Γλ = π|tλ|2Nλ
0 exists, where HAM

at low energies is well described by the spin-isotropic Kondo model. This remains true

even though the average local occupation of the dot may be smaller than 1, indicating

mixed valency. In this regime, integrating out virtual charge fluctuations through a

Schrieffer-Wolff transformation takes HAM, Equation (8), into the Kondo model [56, 57].

Here, Nλ
0 is the density of states (DOS) of lead λ at EF .

It is interesting to note that the Anderson model of Equation (2) can also develop

a Kondo effect in its charge sector. At half-filling, where εd + U/2 = −eVG, an SU(2)

symmetry in the charge sector ensure the degeneracy of the empty and doubly occupied

local states. For negative values of the Coulomb matrix element U , these two states

form the local ground state. Again, a Schrieffer-Wolff transformation can be employed
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Figure 2. (a) Sketch of a quantum dot formed by a C60 molecule and attached to

two leads, labeled S and D. An additional gate electrode allows to tune the system

through one or several Coulomb blockade valleys as a function of the gate voltage VG.

(Adapted from [54]) (b) At energies and temperatures small compared to the level

spacing the effective model for a quantum dot is the Anderson impurity model. The

gate voltage VG shifts the energy of the energy level of the dot with respect to the

Fermi energy EF of the leads and possibly the matrix element between lead states

and the dot level. The sharp resonance right at EF is the Kondo resonance and at

T << TK possesses a full width at half maximum of the order of TK . (Sketch adapted

from [55])

to integrating out virtual spin fluctuations and a Kondo model emerges in the low-energy

charge sector. The associated Kondo effect is known as the ’charge Kondo effect’ [58].

In contrast to the case of a magnetic impurity immersed in a metallic host, for

the Kondo effect in quantum dots, it is not ρ(T ) that shows a characteristic increase

as T is lowered through TK , as shown in Figure 1(a), but the conductance G(T ) that

passes through the system. G(T ) increases up to its maximal value of G(T = 0) = 2G0,

where G0 = e2/h is the quantum of conductance and the factor of two accounts for

the spin degree of freedom. The maximal G is reached at T = 0 for the particle-hole

symmetric HAM, where 2εd + U = 0 and for symmetric coupling ΓD = ΓS. Away from

particle-hole symmetry, the Schrieffer-Wolff transformation also generates a potential

scattering term which reduces the conductance slightly in accordance with Friedel’s

sum rule [59]. For non-symmetric coupling the conductance is further suppressed by a

factor 2ΓDΓS/(ΓD + ΓS).

Figure 2(b) shows the interacting local DOS of the quantum dot with two single-

particle peaks, related to the singly and doubly occupied states, and located well below

and well above EF . These two peaks possess a characteristic width Γ = ΓD + ΓS. At

T � TK , the local DOS displays a sharp resonance of characteristic width TK that is

pinned at close vicinity of EF and acquires a value at EF and T = 0 that is enforced by

Friedel’s sum rule.

Depending on the particular realization of HAM, the corresponding characteristic

energy scales of EC , U , tS, tD and 1/N0 can vary considerably. Together, these

parameters determine the Kondo energy scale TK . For semiconductor heterostructures

[48, 49, 50] the resulting TKs are comparatively small, i.e., typically of the order of

1K and below. These structures can, on the other hand, be very well characterized in
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Figure 3. Realization of the magnetic 2CK effect in a semiconductor heterostructure.

(a) Sketch of the setup with a large but finite quantum dot (in red), the source and drain

lead (in blue). The small quantum dot in the middle confines the local, Kondo-active

degree of freedom. (b) Actual realization of the system by the Stanford group. The

color coding corresponds to that in (a). (c) The conductance well below TK displays

the characteristic
√
T behavior on top of a residual conductance and possesses V/T -

scaling, where V is the bias voltage between source and drain. (Data in (b) and (c)

taken from [66])

terms of the parameters of the effective Anderson Hamiltonian HAM. This facilitates a

comparison with theoretical models. The Kondo effect has also been realized in carbon

nanotubes where the corresponding energy scales result in TKs of the order of 10K [60].

The highest Kondo temperatures have been realized in single molecule devices where

TKs around 100K and higher are possible [61]. Obtaining a full characterization of these

molecular systems remains, however, a challenge [54, 62]. Moreover, due to the larger

energy scales in atomic and molecular systems, one is typically confined to stay within

one Coulomb valley.

The Kondo effect has even been realized in artificial atoms attached to

ferromagnetic leads [63, 64] which allows for new types of quantum critical phenomena

like, e.g., the quantum critical destruction of Kondo screening due to the coupling to

ferromagnetic spin waves in the leads [65, 57].

One may wonder why the setup shown in Figure 2 with source (S) and drain (D)

leads as two screening channels does not lead to a 2CK model but instead constitutes

a realization of the one-channel case. As it turns out, when performing a Schrieffer-

Wolff transformation, the mixing terms tDt
∗
S and tSt

∗
D ensure that only the symmetric

combination of S and D couples to the dot, while, for identical leads, the anti-symmetric

combination completely decouples from it. This leads to a standard (one-channel) Kondo

model.

3.2. Multi-channel Kondo physics in engineered structures

3.2.1. Two-channel Kondo effect in a small quantum dot The applicability of the

single-channel Anderson model as the proper low-energy model of small quantum dots

as depicted in Figure 2 is restricted to energies that are small compared to the energy

level spacing of the dot. Moreover, a vanishing bias voltage V = ES
F − ED

F between S

and D leads is required, as for V 6= 0, the decoupling of the anti-symmetric combination
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no longer fully applies. The non-vanishing of tSt
∗
D and tDt

∗
S ensures that the Anderson

model with source and drain leads can be mapped to the one-channel Kondo model.

Obviously, a vanishing of these terms implies G(T, V ) ≡ 0. In order to generate the 2CK

effect in these quantum dots, a situation is required where the mixing terms vanish.

In 2003, Y. Oreg and D. Goldhaber-Gordon proposed a realization of a magnetic

2CK model [67]. Their proposal is based on an ingenious idea of how to suppress the

mixing terms and is sketched in Figure 3(a): The quantum dot is coupled to S and D

leads, as before, but also to an additional large but finite dot, which is characterized

by a non-vanishing charging energy EL
C and energy level spacing ∆L. The EL

C of this

large dot will tend to suppress electron transfer from the leads to the large dot once

kBT � EL
C (kB is the Boltzmann constant) is satisfied and therefore the mixing terms

will be suppressed for sufficiently low T . As a result, this setup is expected to display

2CK physics at energies and temperatures well below EL
C . On the other hand, at energies

and for kBT large compared to EL
C , the large dot will simply act as yet another lead

and renormalize the effective exchange coupling constant correspondingly. The resulting

flow towards the strong-coupling fixed point can be followed up to energies of the order

of EL
C . As Oreg and Goldhaber-Gordon showed [67], the system at this energy scale is

effectively described by

H2CK =
∑
k,σ

∑
λ=S,D,a

εk,λf
†
k,σ,λfk,σ,λ + ua

(
na −N a

)2
+
∑
∑ εdd

†
σdσ

+ JaS · sa(0) + JcS · sc(0), (10)

which is equivalent to the 2CK Hamiltonian where the label λ = S,D, a refers to source

(λ = S), drain (λ = D), and large quantum dot (λ = a) parts. In Equation (10), sc(0)

denotes the spin density of the symmetric combination of S and D states at the site of

the small dot, where the Kondo-active degree of freedom is located. To ensure that the

2CK effect can be reached, Ja = Jc has to be ensured via a judicious tuning of additional

gate electrodes. For all this to apply, the level spacing ∆L has to be sufficiently small.

This leaves a finite energy range ∆L < ε < EL
C in which the flow towards the 2CK fixed

point should be observable [67]. Unfortunately, ∆L and EL
C are not independent; a tiny

∆L implies a small EL
C .

The proposal by Oreg and Goldhaber-Gordon was subsequently realized by the

Stanford group and 2CK behavior of the conductance G(T, V ) was indeed observed

[66, 68]. Figure 3(b) shows the semiconductor heterostructure with the large and small

dots and source and drain lead. The color coding of the sketch in Figure 3(a) is such

that it reflects that of Figure 3(b). The conductance G(T, V ) near the 2CK fixed point

is predicted to behave in a singular fashion, i.e., as

G(T, V = 0) = G(T = 0, V = 0)− ã
√
T/TK , (11)

with G(T = 0, V = 0) as the residual, T = 0 conductance at vanishing bias voltage

V and where ã is a numerical prefactor. This behavior is the analog of the T

dependence of ρ(T ) listed in Table 1. The T dependence is in both cases inherited

from that of the conduction electron T-matrix T . A powerlaw behavior similar to
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that of the T dependence is also expected for the V dependence of the conductance:

G(T = 0, V ) − G(T = 0, V = 0) ∼
√
V/TK . As shown in Ref. [66] and reproduced

in Figure 3(c), such a scaling behavior is indeed observed. The ensuing V/T scaling of

G(T, V ) is further evidence for 2CK scaling in the experiment of Ref. [66].

3.2.2. Two-channel Kondo effect in a large quantum dot In the 2CK realization of Ref.

[67, 66], a large quantum dot serves as a screening channel in the dynamic energy range

between ∆L and RL
C . Interestingly, such a large dot with a non-vanishing EC and a

tiny ∆, as shown in Figure 4, can itself also become a source of Kondo scattering, when

coupled to a reservoir of gapless electronic states [69, 70, 71].

In this realization of the Kondo model, the charging state of the large dot plays

the role of the (pseudo-)spin degree of freedom. In terms of this pseudospin variable,

the tunneling of electrons in and out of the dot become Kondo exchange processes. The

whole setup, shown in Figure 4(a), is therefore equivalent to a spin-anisotropic Kondo

model. The anisotropy is a consequence of the origin of the pseudospin. The charge

degree of freedom in this model lacks the full SU(2) symmetry.

As the gate voltage VG is tuned, the system transitions through different Coulomb

blockade valleys and regions where the average charge 〈N〉 on the dot will change from n

to n+1. In the middle of such a region, at V ?
G one has 〈N(V ?

G)〉 = n+1/2. Changing VG
away from V ?

G breaks the degeneracy between the two charging states. The gate voltage

δVG = VG−V ?
G acts as an effective magnetic field within this pseudospin representation.

The Kondo effect in this system leads to subtle logarithmic behavior in

∂〈N〉
∂δVG

∼ ln
(
δVG

)
. (12)

With the help of electrodes, the properties of the tunnel contact can be modified in order

to tune the number of modes or channels coupled to the dot. The modes are labeled

by the quantized transverse momentum that results from the confinement generated by

the tunnel contact.

In order to realize the 2CK effect, a second degenerate screening channel is required.

The perhaps most natural way to achieve this is via the spin degree of freedom of

the electrons. The degeneracy of the spin channels is easily ensured by time-reversal

invariance in the absence of magnetic fields. Alternatively, different charge channels

could be coupled to the quantum dot. This may have the practical advantage that

additional electrodes could be used to tune the system to the required equal tunneling

coupling for both channels. A second lead is also required in order to probe for the

presence of 2CK correlations via conductance measurements.

At the charge degeneracy point, δVG = 0, G(T ) should vanishes in the scaling

regime as G(T ) ∼ T [71, 73].

A particular feature of this anisotropic Kondo model is that it is placed right at the

2CK analog of the Toulouse point, which is also known as the Emery-Kivelson point,

which was briefly discussed above [43].



Two-channel Kondo Physics: from Engineered Structures to Quantum Materials Realizations14

Figure 4. Kondo scattering between charging states of a large quantum dot: (a)

Sketch of the setup: a large quantum dot is coupled to a lead. A gate electrode

allows to tune the average number of electrons on the dot via VG. (b) Realization

of Matveev’s proposal using semiconductor/metal hybridstructures: a metallic dot

connected to quantum point contacts which in turn are attached to leads formed

by two-dimensional electron gas (2DEG) states as in Figure 3. (c) Contour plot of

the conductance G(τ1, τ2) as function of tunneling barrier strengths τi (i = 1, 2) at

T = 11.5mK. For τ1 6= τ2, one of the two channels will dominate while the other

decouples as T → 0. At the 2CK (Data in (b) and (c) taken from [72]).

The underlying assumptions in Matveev’s mapping onto the Kondo model are that

the ∆ of the dot is negligible and that kBT < EC . As mentioned earlier, these two

conditions are not independent and a vanishing ∆ would also imply a diminshed EC .

Moreover, the number of modes in the lead (or leads) coupling to the large dot should

be small and any channel anisotropy between these couplings need to be avoided if

the 2CK fixed point is to be reached. This demand of high control and characterization

suggests the use of semiconductor heterostructures for possible realizations of Matveev’s

proposal but the resulting ∆s are generally too large. Metal-based dots on the other

hand avoid this problem but make the creation of judiciously tuned contacts very difficult

[74]. Additional practical challenges concern the energy dependence of the tunneling

barriers, which, if present, may restrict the dynamic range for 2CK scaling as well as

the identification of V ?
G from the conductance alone, based on theoretical expectations.

These concerns not withstanding, Iftikhar et al. managed to realize this charge-

version of the 2CK effect [72]. Their approach is based on metal-semiconductor hybrid

structures of the type shown in Figure 4(b) to combine the advantages of both structures.

The experiment is performed in a large magnetic field to remove the spin degree of

freedom [72]. Spatially separated leads act as independent screening channels. This

allows for a realization of the multi-channel Kondo model with more than two channels.

The situation shown in Figure 4(b), e.g., features three leads [72]. If one of the three

contacts is closed, the system can be tuned to the 2CK fixed point at which G(T ) ∼ T

was observed [75].

3.2.3. Carbon nanotubes and graphene The possibility to generate a 2CK effect in

carbon nanotubes has been proposed in Ref. [76]. This proposal involves a short

nanotube and a filler atom, placed within the nanotube, that possesses a spin-1/2
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moment. This composite system is then coupled to two semi-infinite nanotubes, acting

as leads, similar to the source and drain gates discussed above. The two degenerate

screening channels in this proposal are linked to the degeneracy of two inequivalent

valleys at the corners of the hexagonal Brillouin zone of graphene. The existence of

the valley degeneracy is a consequence of the sublattice structure of graphene and

thus symmetry protected. As a carbon nanotube is a rolled up sheet of graphene, one

can obtain the band structure of a nanotube from that of graphene with appropriate

boundary condition. This process will preserve the valley degeneracy. In order to ensure

that both screening channels will couple equally to the spin-1/2 moment in order to reach

the 2CK fixed point, a half-filled, spatially uniform (l = 0) wave function is required to

carry the moment of the filler atom. So far, no experimental realizations of this proposal

has been reported.

An earlier proposal for 2CK physics in graphene was based on a largely similar idea

[77]. A magnetic moment-carrying atom would be placed in the center of the unit cell of

graphene, so that a 2CK model would arise due to the inequivalent valleys. The linear

dispersion near the Dirac points in graphene results in a density of states of conduction

electrons which vanishes in a linear fashion. The resulting 2CK model would thus be

a pseudogap 2CK model [78]. No realization of this proposal has so far been reported.

Such a setup could be probed using scanning tunneling spectroscopy, where a metallic

tip is placed above the moment-carrying adatom. The tunneling current would measure

the local density of states and possibly contain 2CK signatures. One possible concern

with this proposal is that any direct tunneling between tip and the graphene substrate

would drive the system away from the 2CK fixed point.

4. Defects in Quantum Materials

Despite considerable efforts and the identification of a number of potential candidates,

no fully convincing and universally accepted and undisputed realization of the

2CK effect in real materials has been identified so far. In contrast to real

materials, semiconductor/metal-hybrid heterostructures allow for a high degree of device

characterization and a deliberate tuning of ε̃d = εd + eVG and t of the effective

Hamiltonian, Eq. (8). In generic materials, these quantities are hard to tune and even

extracting their values is difficult.

On the other hand, the realizations of the 2CK effect in the engineered structures

discussed in the previous section require a finite charging energy EC and at the same

time a tiny level spacing ∆. This results in only an intermediate dynamic range from

∆ to EC over which 2CK scaling can be observed and small Kondo temperatures TK of

order 1K and below.

Although, the 2CK effect was originally discussed in the context of local moments in

metals [19] there does not seem to exist a widely accepted realization of the 2CK impurity

model in generic quantum materials. Yet, a direct and convincing demonstration that

the 2CK fixed point can exist and is experimentally reachable is highly desirable and
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Figure 5. Point contact study of Refs. [79, 80]: (a) Sketch of a metallic point contact

with a high degree of structural disorder in the metal constriction. (b) The zero-bias

anomaly observed by Ralph and Buhrmann scales with exponent 1/2 in temperature

and bias voltage and is compatible with a TK ≈ 3.5K. ((a) and (b) taken from [80]) (c)

Sketch of a double well potential. This gives rise to a two-level system which serves as

a model for the tunneling centers in the nano-constriction.

would constitute a stringent test of our understanding of the interplay of local and

itinerant quantum degrees of freedom that is central to strongly correlated electron

systems. As a result, a number of candidate systems have been identified over the

years.

4.1. Metal nano-constrictions and point contacts

Nano-constrictions and point contacts have been instrumental in the study of quantum

corrections to the classical Sharvin resistance [81]. For small contacts, the quantization

of the transverse momentum limits the conductance of the contact in a manner

analogous to the case of semiconductor/metal-hybrid quantum dots contacts discussed

in Section 3.2.2. This allows for a measurement of the properties of individual transport

channels. The effect of electron-electron interact between channels has also been

measured [82] and explained in terms of Kondo correlations [83]. In contrast to

semiconductor heterojunctions, however, the degree of characterization and quantum

control is considerably reduced in break-junctions and nano-constrictions.

A frequently occurring feature in such point contacts is a zero-bias anomaly in the

differential conductance G(T, V ) = dI/dV
∣∣
V=0

(here, V is the applied bias voltage across

the constriction causing a current I). This anomaly was systematically studied by Ralph

and Buhrman [79, 80]. Figure 5(a) provides a sketch of a Cu-based nano-point contact

used in the study of [79, 80]. In general, the conductance of the point contact depends

on T and V . Surprisingly, however, the conductance difference between T 6= 0 and

T = 0, rescaled by a factor T−1/2, only depends on the combination V/T (at sufficiently

low T and V ). This observation is reproduced in Figure 5(b) from [79, 80]. This scaling

plot implies that for the range of V and T over which scaling occurs, the leading T

dependence of G(T, V ) is ∼ T 1/2 and the leading V dependence is ∼ V 1/2. These

results thus appear to be compatible with a 2CK effect and reminiscent of the results

shown, e.g., in Figure 3(c). Annealing studies establish that the zero-bias anomaly can

be completely eliminated and indicate that the origin of it originates from the structural
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disorder in the nano-constriction. Similar results have been obtained using Al-, Ag-, and

Pt-based point contacts [79, 80]. More recently, Al/AlOx/Sc planar tunnel junctions were

also shown to feature a zero-bias anomaly with a T and V dependence of G(T, V ) that

is compatible with an underlying 2CK effect [84].

The fabrication of point contacts and nano-constrictions is generally accompanied

by the creation of a considerable amount of structural disorder in the contact. In analogy

to the modeling of disorder in metallic glasses and amorphous materials, where such a

model captures the T dependence of the specific heat and elastic properties of these

systems, the structural disorder is assumed to give rise to double well potentials at the

defect locations [85]. Atoms, ions, or electrons, trapped in these double well potentials,

mainly occupy the lowest two states in the double well which are thus also known as

two-level systems (TLS). A double well potential with its two local minima, separated

by a tunneling barrier ∆0, is shown in Figure 5(c). It was shown by Zawadowski that

TLS immersed in a metallic host can be mapped to a 2CK model [37]. This lead to the

conjecture that the results reported in Refs. [79, 80] could be a signature of proximity

to the 2CK fixed point [86, 87].

Interestingly, the zero-bias anomaly of the point contacts investigated in Refs.

[79, 80] show a strong magnetic field (B) dependence. Even at large B field, the dip in

the differential conductance is not completely suppressed. The T and V dependence of

the resulting electronic state at large B does not concur with expectations for the 2CK

nor the single-channel Kondo effect. Not only is the sensitivity to a B field counter

intuitive, the lack of a distribution of TKs in these highly disordered systems with a

presumably broad distribution of parameters like e/g/ ∆0, which characterize the TLSs,

is surprising. Moreover, on general grounds, the 2CK model that arises from a TLS does

not appear to be in the regime where the singular behavior of the 2CK fixed point is

found [88].

4.2. Two-level systems

For a particle localized in a double well potential V (x), one can associate a pseudospin

algebra with the lowest two states. The pseudospin degree of freedom is associated with

the position of the particle in the double well potential [20]. Assuming for simplicity a

symmetric double well potential V (−x) = V (x), the ground state Φg will be symmetric,

i.e., Φg(x)=Φg(−x) while the first excited state has to be anti-symmetric. Alternatively,

one can use the two states which are localized in the left (|+〉) and right (|−〉) minimum.

These two states form the analog of the spin-up and the spin-down states. If V (x) is not

symmetric, |+〉 and |−〉 will not be degenerate. This is the analog of a Zeeman splitting

h. Spontaneous tunneling between the two states will induce a splitting ∆0, see Figure

5(c).

Immersed in a metal, the conduction electrons scatter at such a TLS and may
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thereby induce assisted tunneling. This is described by an interaction term

Hint =
1

N

∑
k,k′,σ

[(
2V 0

k,k′ + V z
k,k′

(
|+〉〈+| − |−〉〈−|

)
+ V x

k,k′

(
|+〉〈−|+ |−〉〈+|

))
c†k,k′,σck,k′,σ

]
, (13)

where the hybridization elements V i
k,k′(i = 0, z, x) are overlap integrals of the conduction

electron wave function and the local states |+〉 and |−〉 and N is the number of k states.

It is convenient to introduce the operators τ zf = |+〉〈+| − |−〉〈−| and τxf = |+〉〈−| +
|−〉〈+|). The conduction electron states can now be expanded in terms of spherical

waves around the location of the double well potential. Restricting oneself to the lowest

terms in the expansion, making use of parity, and transforming into a |±〉c basis for

the conduction electrons localized at the left or right minimum, one obtains [37, 89, 90]

H2CK =
∑
k,α±,σ

εkc
†
k,α,σck,α,σ + ∆0τ

x
f

+
∑
α,β,σ

(
V zτ zf τ

z
c

∣∣
α,β

+ V xτxf τ
x
c

∣∣
α,β

)∑
k,k′

1

N
c†k,α,σck,β,σ (14)

where τ ic (i = x, z) are Pauli matrices in the |±〉c basis and the term ∼ V 0
k,k′ has

been dropped, so that Equation (14) is just the 2CK Hamiltonian. H2CK is diagonal

in the spin channel. Thus, the electron spin provides two degenerate, independent

screening channels which are expected to overscreen the local pseudospin. However, as

pointed out by Moustakas, the term ∼ V 0
k,k′ contains in general a direct tunneling term∑

k,k′ c
†
k,+,σck′,−,σ [91]. Such a term is relevant at the 2CK fixed point and would drive

the system away from it. This has lead to the question how the presence of higher

excited states will modify Equation (14) [92]. This question was finally settled in Refs.

[93, 94] by considering the action of a heavy particle of mass M in a general double

well potential V (x) interacting with conduction electrons. After bosonizing the action

and integrating out the conduction electrons, the authors of [94] were able to cast the

action into the form of a one-dimensional Coulomb gas of + and − charges (i.e. kinks

and anti-kinks) describing the tunneling events between the classical trajectories which

are solutions of Md2/dτ 2 = dV/dx. As discussed in Section 2.1, the Kondo problem

has a very similar representation of its actions with which the results of Ref.[94] can be

compared. This lead to the conclusion that the effective (renormalized) ∆̃0 will always

be much larger than the dynamically generated TK of the problem, making it impossible

to enter the scaling regime of the 2CK fixed point. Therefore, TLS do not appear to be

a likely route towards observation of the 2CK fixed effect [94].

If the generation of direct tunneling terms could be avoided, a different conclusion

might be reached. This insight led Moustakas and Fisher to consider defects that tunnel

with a triangular symmetry. In this case, group theory ensures that a double degenerate

level has to exist in the spectrum. A possible issue with this proposal is that in general

higher dimensional irreducible representation commonly only occur for excited states,

not the ground state [91].
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4.3. Electron-electron interaction and weak localization corrections

The search for realizations of the 2CK impurity effect in generic quantum materials

confronts us with an additional complication. In order to measure the effect of dynamic

scattering centers in a solid, a sufficiently large number is required to detect signatures in

thermodynamic and transport properties. Yet, the concentration should be low enough

so that one can safely ignore correlation effects between these quantum impurities. This

places the system in the dilute limit. Supposing that these impurities may not give rise

to 2CK behavior but, instead, only act as simple potential scatterer. This inevitably

affects the mean free path of the conduction electrons of the host metal, le, and places

the system into the domain of weak disorder, defined as the regime where the Fermi

wavelength λF is much shorter than le. This results in a collision time τe ∼ le/vF with

vF being the Fermi velocity. At time scales much larger than τe, the electron motion is

diffusive with a diffusion constant given by D = vF le/d, where d is the space dimension

[95, 96]. A comprehensive review of experiments on electron dephasing has been given

by Lin and Bird [97].

Due to the diffusive motion of the electrons in a weakly disordered metal, which is

slower than in the clean limit, the effect of the electron-electron interaction is enhanced.

As a result, the quasi-particle lifetime is modified. Fluctuations in the electron density

due to electron-electron interaction affect the energy levels near the Fermi and therefore

the density of states N(E) near EF . As a consequence, the electron-electron interaction

in the disordered metal will result in a decrease of N(E ≈ EF ) from its clean limit. This

is known as the Altshuler-Aronov anomaly [98]. At the linear response level, transport

properties can be obtained from N(E), so that the Altshuler-Aronov anomaly also leads

to a dimension-dependent correction to the conductance δG, which is given by [96]

δG(T ) ∼ −u



√
~D/T
L

, d = 1 (15a)

ln
(√~D/T

le

)
, d = 2 (15b)

L

le
−
√
TL√
~D

, d = 3, (15c)

where u is a dimensionless parameter that measures the interaction strength and L is the

linear dimension of the system. In d = 2, the correction has a logarithmic temperature

dependence. In d = 3, however, it displays a square-root dependence in T , just like the

T dependence expected for the 2CK effect! Although, the Altshuler-Aronov anomaly is

a small correction, it appears generically without the need of fine-tuning. Its amplitude

is fully determined by a few bulk properties [95, 96, 97, 98]. In order to consider if a two-

dimensional system of finite width W should be treated as a two- or three-dimensional

system, one has to compare τφ to W 2/D, i.e., the time it takes the electron to diffuse

a distance W . If τφ � W 2/D, we have d = 2. In the opposite case, the system is

effectively three-dimensional. In an anisotropic system and for weak disorder, it turns

out that all results hold true in terms of an anisotropic diffusion coefficient [99].
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The perhaps most likely route to 2CK behavior in real materials will rely on a

pseudospin degree of freedom for the Kondo exchange scattering. The spin degeneracy

of the conduction electrons, ensured by Kramers’ theorem for time-reversal invariant

systems, would then give rise to two independent screening channels and induce

overscreening. The spin degeneracy remains unaffected for magnetic field strengths

which are tiny compared to the half-bandwidth of the conduction electrons. Thus, a clear

understanding of the magnetoresistance of a disordered metal may help to distinguish

between the resistivity signatures in a magnetic field of the 2CK fixed point and those

caused by the electron-electron interaction due to disorder [100].

In addition to the Altshuler-Aronov anomaly, the conductivity is reduced by a

quantum effect that originates from the interference of time-reversed paths that can

be transversed within the coherence time τφ. This contribution is known as the weak

localization correction. Its overall structure resembles that of the Altshuler-Aronov

correction. While the weak localization correction is affected by the presence of a

magnetic field, the Altshuler-Aronov correction is insensitive to it. In a weakly, three-

dimensional disordered metal, the conductivity correction in a magnetic field is thus

given by [96]

δσ(T,B) =
1.3e2

4π2~

(4

3
− 3

2
F̃
)√T

D
− e2

~
F̃

4π2

√
T

2D
g̃(h), (16)

where the function g̃ depends on the reduced field h = gµBB/kBT (µB is the Bohr

magneton and kB is the Boltzmann constant). It has the asymptotics g̃(h) ∼ h2 for

h � 1 and g̃(h) ∼
√
h for h � 1. Its explicit form g̃ can be found in Ref. [96],

which gives a comprehensive review of transport in disordered metals. F̃ is the so-called

screening factor. For strong screening of the electron-electron interaction, F̃ approaches

0. A field independent conductivity correction as in a non-magnetic 2CK impurity is

expected for F̃ = 0. In general, F̃ is difficult to calculate accurately[95].

4.4. Ferromagnetic L10-Mn(Al,Ga) films

An intriguing resistivity increase observed in MnAl has been reported in Ref. [101]

and related materials [102]. MnAl is of technological importance due to its interesting

ferromagnetic properties. It has a large magnetic moment of 2.4 µB per formula unit

and a Curie temperature of TC = 650K [103]. These highly disordered MnAl alloys

possess the L10 structure and can display a pronounced T 1/2-increase in their low T

ρ(T ). This T 1/2-increase has been observed epitaxially grown L10 films [101, 102], see

Figure 6(a) and (b). The growth conditions result in considerable strain in the films

due to lattice mismatch with the substrate and generate disorder. The temperature

of the substrate during growth, TS, controls the amount of this structural disorder.

The measured dependence of ρ(T ) on TS is reproduced in Figure 6(a) and points to the

influence of disorder in the film. Similar results have also been reported for ferromagnetic

L10-MnGa films [102].

An orbital 2CK effect has been invoked by Zhu et al. to explain the T dependence
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Figure 6. Transport in epitaxially grown L10 MnAl films with the L10 structure.

(a) Resistivity ρ(T ) vs. temperature for different TS , where TS is the substrate

temperature during the growth of the film. The data for TS = 200K and TS = 250K

display a marked increase in ρ(T ) for T < 50K. (b) ∆ρxx(T ) vs. T 1/2, where ∆ρxx(T )

is the difference of the resistivity ρ(T ) and a background contribution defined through

a best fit procedure. (c) ρ(T ) is argued to display three different regimes: in (I)

ρ(T ) ∼ log(T ), (II) is a
√
T behavior and (III) is a crossover to a Fermi liquid regime

where ρ(T ) ∼ T 2. (Data taken from [101]).

of ρ(T ) [101]. Zhu et al. point out that three different transport regimes are observed

in the T behavior of ρ(T ) : At high T , a logarithmic-in-T behavior is observed, followed

by a ρ(T ) ∼ T 1/2 regime towards lower T . Lowering T even further, one observes a

crossover in ρ(T ) to a T 2 dependence [101]. This is schematically portrayed in Figure

6(c). According to the authors of Ref. [101] each of the three transport regimes can be

identified with a transport regime of the non-magnetic 2CK problem. The T 1/2 regime

of ρ(T ) is reproduced in Figure 6(b). Interestingly, only the data for TS = 200◦ seem to

show a deviation from the T 1/2 towards lower T .

The origin of the conjectured 2CK physics in these L10-MnAl films would be the

Kondo scattering generated by conduction electrons tunneling off either atoms, atom

groups or electrons in defect-generated double-well potentials. As a result, one obtains

two-level systems coupled to conduction electrons and hence a 2CK model realization

[101].

A number of observations are noteworthy. As discussed in Section (4.2), induced

tunneling at TLSs does not offer a viable route to the 2CK effect. Moreover, assuming

that indeed anisotropic 2CK impurities exist in the films, no logarithmic-in-T behavior

in ρ(T ) at high T is expected for the model of Equation (14) [104].

The general difficulties in realizing the 2CK fixed point are related to the high

demand on channel symmetry. In the proposed model, Equation (14), the two screening

channels are provided by the two spin projections of the conduction bands in L10-

MnAl. On the other hand, time-reversal invariance in L10-MnAl is broken due to

the ferromagnetism and the exchange splitting is large, i.e., of the order of 2eV .

Unfortunately, Ref. [101, 102] does not explain how a 2CK effect could possibly survive

in such a strong exchange field. For comparison, placing a spin-1/2 moment in an
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antiferromagnet, where the average moment vanishes, destroys the one-channel Kondo

effect [105]. It thus seems unlikely that a 2CK effect, either magnetic or orbital, could

form deep in a ferromagnetic phase.

The authors in [101] also report a weak negative magnetoresistance over the T range

from 2K to 300K that is displaying a
√
B dependence on the applied magnetic field B.

While it is stated that this dependence is unlikely related to the T dependence of ρ(T ) in

the supposed 2CK regime, the precise origin of the negative magnetoresistance remains,

according to Ref. [101], unclear.

From the discussion in the previous subsection it follows, however, that weak

localization corrections to ρ(T ) are compatible with a B1/2 dependence.

In Figure 6(a), the data of [101] are reproduced. As one can see, in the film grown

on a surface at TS = 200◦C shows a pronounced increase of ρ(T ) starting at around

150K. This particular sample appears to be located close to a metal-insulator transition

and may not be well described by the theory for weakly disordered metals. Only the

data for TS = 200◦, however, seem to show a deviation from the T 1/2 towards lower

T . Similar arguments may apply to a weaker degree to the film grown at TS = 250◦C.

The films grown at TS = 300◦C, 350◦C, and 400◦C on the other hand appear to be in

the weakly disordered regime and their ρ(T ) seems to be explainable in terms of the

Altshuler-Aronov correction.

It therefore seems conceivable that the reported behavior for epitaxially grown

ferromagnetic L10-MnAl films is compatible with expectations for electron-electron

interaction effects in weakly disordered metals. It is most likely not caused by disorder-

driven orbital 2CK physics. A similar conclusion has recently been reached by Zhu and

Zhao [106].

4.5. Ferrimagnetic LaNiO3-CoFe2O4 composites

Ferrimagnetic LaNiO3-CoFe2O4 composites have been investigated in Ref. [107].

These composites have the general composition (1 − x)LaNiO3+xCoFe2O4 and are

ferrimagnetic as a result of the ferromagnetism of LaNiO3 which forms below TC =

520◦K. Thermodynamic and transport properties for a range of x including x =

0, 0.10, 0.15, 0.20, 0.25 are reported in Ref. [107].

In Figure 7, the transport data for x = 0.10 are reproduced. Figure 7(a) depicts

ρ(T ) over the full measured range from 10K to 300K. In an applied magnetic field

the data show an upturn as T is lowered starting at around 30K. In Figure 7(b) this

upturn is analyzed in terms of an log(T ) dependence while in Figure 7(c) ρ(T ) is plotted

against T 1/2. Both, Figures 7(b) and (c), display a linear dependence of the data. In

contrast, for pure LaNiO3, no ρ(T ) anomalies are observed. From the magnetic field

dependence, i.e., a negative magnetoresistance, the authors conclude that for x = 0.10

LaNiO3-CoFe2O4 composites displays a spin-1/2 (magnetic) one-channel Kondo effect.

For x = 0.15, an overall similar behavior of ρ(T ) to that of x = 0.1 is found

[107]. This behavior can be fitted to a logarithmic temperature dependence at higher T
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Figure 7. Transport properties of ferrimagnetic composites with 10% CoFe2O4. (a)

Resistivity ρ(T ) vs. temperature T for a range of magnetic fields. The inset zooms in

on the low T upturn. (b) ρ(T ) in a semi-log plot. The straight lines are logarithmic in

T . The amplitudes have been obtained from fits to the data. (c) Same data as in (b)

plotted against T 1/2. The straight lines are square-root in T . The amplitudes have

been obtained from fits to the data. The magnetic field dependent data in (a), (b),

and (c) have been shifted vertically for clarity. (Data taken from [107])

followed by a
√
T increase upon cooling. The magnetic field independence of both the

ln(T ) and
√
T behavior of ρ(T ) is interpreted as evidence for an orbital 2CK effect due

to structural disorder. From a fit to the ln(T ) and
√
T behavior, the authors of Ref.

[107] infer a TK ≈ 18.5K.

The specific heat data for x = 0.1 and x = 0.15 show a linear-in-T dependence

down to ∼ 20K. Below ∼ 20K, deviations occur which are attributed to the presence of

two-level systems with a corresponding distribution of energy levels [107].

Again, a few cautionary remarks are in order regarding the interpretation of the

observed resistivity anomalies in terms of magnetic single-channel Kondo physics for

x = 0.10 and orbital 2CK physics for x = 0.15. By and large, these concerns are similar

to the ones raised in subsection 4.4. Specifically, (1) two-level systems are an unlikely

source of orbital 2CK physics. (2) for an anisotropic 2CK model like the one invoked

by the authors to explain the x = 0.15 data, no ln(T ) behavior in ρ(T ) above the
√
T

regime is expected [104]. (3) Due to the non-vanishing ordered moment in the The

LaNiO3-CoFe2O4 composites, neither magnetic single-channel Kondo (for x = 0.10) nor

non-magnetic 2CK physics (for x = 0.15 is expected. Unfortunately, Ref. [107] does not

provide any explanation or proposed model for how structural disorder could give rise

to local magnetic moments at x = 0.1 while at x = 0.15 these local magnetic moments

have been replaced by non-magnetic dynamic scatterers that drive an orbital 2CK effect.

All this would have to happen in the dilute limit, where inter-impurity effects can be

neglected and in the presence of the underlying magnetic order.

If the interpretation of Ref. [107] is correct, ρ(T ) for x = 0.10 is expected to develop

Fermi liquid behavior well below TK . Since TK ≈ 18K, ρ(T ) measurements down to 1K

should not only be helpful in extending the fitting range in order to distinguish between
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a logarithmic-in-T and a square-root-inT dependence. They should also be able to

indicate if a Kondo-screened Fermi liquid state forms for x = 0.10. Alternatively, the

observed behavior of ρ(T ) in LaNiO3-CoFe2O4 composites may just be a reflection of

electron-electron interaction effects that generically form in weakly disordered metals.

4.6. Arsenic vacancies in the PbFCl structure type

Several As-based metallic systems possessing the PbFCl structure, a substitution variant

of the Fe2As type, e.g., ThAsSe or HfAs1.7Se0.2, display a magnetic-field independent

low T resistivity anomaly, ρ(T ) = ρ0−|A|
√
T , where ρ0 = ρ(T = 0) denotes the residual

resistivity [108, 109]. In order to address the origin of this anomaly, the authors of Ref.

[110] identified two homologues with largely similar physical properties and combined

precise physical measurements with chemical and structural analyses performed on the

same single crystal. As a result, the authors reached the conclusion that the transport

anomaly in ZrAs1.58Se0.39 has to be generated by a 2CK effect which is driven by As

vacancies.

The homologue to ZrAs1.58Se0.39 used for comparison in Ref. [110] is ZrP1.54S0.46.

Both pnictide-chalcogenides condense in the tetragonal (P4/nmm) PbFCl structure

which is shown in Figure 8(a). This crystal structure consists of square-planar 44

nets stacked along the [001] direction. A fundamental difference of arsenide selenide

compared to other pnictide-chalcogenides is that the homogeneity range of the ternary

system Zr-As-Se is located to the right of the tie-line ZrAs2–ZrSe2 on the As depleted

side, see Figure 8(b). A careful structural analysis conducted by the authors of Ref.

[110] reveals that vacancies only occur within the As layers of ZrAs1.58Se0.39, denoted

Pn2a in Figure 8(a). In contrast, in the homologue ZrP1.54S0.46, located on the tie-line,

the Pn2a layer is completely filled.

As it turns out, a replacement of As and Se by P and S, does not substantially alter

basic physical properties, such as the overall behavior magnitude of ρ(T ) and the specific

heat. This suggests that the Altshuler-Aronov correction in both homologues should

be similar. This conclusion is based on the following observation: The comparatively

small Altshuler-Aronov correction to ρ(T ) depends on the phase relaxation and electron-

electron collision times. These, in turn, are determined by the diffusion constant, D,

and the density of states at the Fermi energy, N0, and can be estimated from underlying

bulk properties [96, 98, 111].

Interestingly, the superconducting properties of both homologues are noticeably

different from each other: While ZrP1.54S0.46 undergoes a superconducting transition at

TC ≈ 3.9K, the superconductivity onset temperature in ZrAs1.58Se0.39 is reduced down

to TC ≈ 0.14K.

The ρ(T ) anomaly of ZrAs1.58Se0.39 that sets in around 15K and, for B = 0, is

interrupted by the superconducting transition at TC ≈ 0.14K, turns out to be completely

field-independent, as shown in Figure 8(b). Shown are the results for two samples of

ZrAs1.58Se0.39, with similar elastic relaxation rates. These were cut from the same crystal
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Figure 8. 2CK effect in ZrAs1.58Se0.39: (a) The PbFCl structure of ziconium pnictide

chalcogenides. The Pn2a layer of ZrAs1.58Se0.39 contains As vacancies but is completely

filled in the case of ZrP1.54S0.46. (b) The ternary system Zr-As-Se at 1223K. The very

narrow homogeneity range of the ternary phase is enlarged on the right hand side.

The dashed line is the tie-line between the binary compounds ZrAs2 and ZrSe2. The

homogeneity range of the arsenide selenide, is shifted from the tie-line ZrAs2–ZrSe2
and forms a triangle between the chemical compositions ZrAs1.65Se0.32, ZrAs1.38Se0.61
and ZrAs1.40Se0.50. (c) Left: ρ(T ) vs. T for ZrAs1.58Se0.39 and ZrP1.54S0.46 in zero

field (B = 0) and at B = 14T . Right: Data of two different samples of ZrAs1.58Se0.39,

#1 and #2, are shown. The dotted line is the expected amplitude for sample #2

of a hypothetical Altshuler-ARonov correction wit F̃ = 0 obtained by fitting D from

sample #1. (d) Different possible arrangements of oligomers due to As vacancies in

the Pn(2a) layer shown in (a). The lower two panels show two configurations that are

related by a C4ν operation. (Data taken from [110]).

which possesses a homogeneous distribution of Zn and Se and only small variations of

As [110].

In Figure 8(c) (ρ − ρmin)/ρmin vs. T 1/2 is shown for both homologues; in zero

field and at B = 14T . In contrast to ZrAs1.58Se0.39, ρ(T ) in ZrP1.54S0.46 does not

show a pronounced T 1/2 behavior and an applied B-field suppresses the signal almost

completely. This suggests that the Altshuler-Aronov anomaly and the effect of the

electron-electron interaction is negligible in this compound and by virtue of the similarity

of the two homologues, the same should hold true for ZrAs1.58Se0.39.

This is further corroborated by the following consideration. Assuming that the

data in Figure 8(c) for sample #1 of ZrAs1.58Se0.39 were a consequence of the Altshuler-

Aronov correction with F̃ = 0, so that the T 1/2 amplitude becomes B-field independent,

see Equation (16), the corresponding amplitude for sample #2 under this assumption
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can be inferred. The dashed line in Figure 8(c) is the resulting magnitude of this

hypothetical Altshuler-Aronov −|A|T 1/2 correction to ρ(T ) for sample #2. It is thus

concluded that the origin of the anomalous −|A|T 1/2 in the low T ρ(T ) of ZrAs1.58Se0.39

is caused by a non-magnetic 2CK effect which is driven by As vacancies [110, 112].

For square nets in compounds possessing the PbFCl structure it is known that

vacancies will result in a Jahn-Teller distortion which will be accompanied by the

formation of As oligomers [113]. Different possible Jahn-Teller distortions and oligomer

configurations are shown in Figure 8(d). The lower two panels show configurations

that are related by a C4ν operation and thus have identical energies as a vacancy in

the square net preserves the C4ν symmetry. A pseudospin representation associated

with the Jahn-Teller distortion is then used to write the conduction electron induced

transitions between different Jahn-Teller distortions related by the C4ν symmetry as an

effective Kondo exchange term between the local pseudospin and that of the conduction

electrons. This results in a 2CK model where the conduction electron spin labels

degenerate screening channels [91, 110, 114, 115].

One possible issue with this proposed scenario is that the pseudospin doublet is in

general not the ground state of the local system. This, however, may change when the

coupling of the doublet to the conduction electrons is considered [116]. In fact, numerical

renormalization group studies suggest that the doublet energy can get renormalized

below the singlet in a wide parameter regime[117]. The conclusion that ZrAs1.58Se0.39

displays a 2CK effect is further corroborated by the suppressed TC , as compared to that

of ZrP1.54S0.46, which points to the presence of efficient Cooper pair breakers [118].

The interpretation for ZrAs1.58Se0.39 in terms of a 2CK effect has recently been

called into question in Refs. [119, 120]; see also [112]. The author of [119, 120] points

out that a proper estimate of the electron-electron interaction has to take into account

the anisotropy of ρ(T ) in the basal plane (ρa) and perpendicular to it (ρc). This is a

valid argument and some anisotropy is expected since both pnictide-chalcogenides are

layered compounds. Part of the ongoing discussion is about the correct value of this

transport anisotropy. Due to sample geometry, ρa cannot be measured reliably up to the

necessary precision required for the tiny relative amplitude of the anomaly (see Figure

8(c)). A consistent explanation should, however, also address the apparent absence of

a noticeable Altshuler-Aronov correction in ZrP1.54S0.46, given that basic properties are

similar to ZrAs1.58Se0.39, which should be enough to determine the amplitude of the

Altshuler-Aronov correction through Equation (15c).

As superconductivity cuts off the −|A|T 1/2 anomaly, no deviations from the square-

root behavior in B = 0 are observable, which would be a clear signal in favor of the

2CK interpretation. Therefore, at present, it seems unclear as to what is the underlying

cause of the ρ(T ) anomaly observed in ZrAs1.58Se0.39.
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Figure 9. (a) The d-electron levels of a free atom or ion are degenerate due to the

isotropy of free space. In a crystalline environment, this isotropy is broken down to

the point group of the crystal. In an octahedral crystal electric field this symmetry

reduction forces the five d-orbitals to split up into two set of degenerate levels with

threefold and twofold degeneracy. (b) If the octahedral symmetry is further reduced,

e.g., due to a nearby vacancy, further degeneracy lifting will occur. In the case depicted

here, a C4ν symmetry is still present, even though an ion in the surrounding octahedron

was removed. Group symmetry implies that a double-degeneracy, associated with the

two-dimensional irreducible representation of the C4ν group, still exists. It is easy to

see, that this remaining degeneracy in the case depicted here is related to the dxz and

dyz orbitals.

4.7. Vacancies in crystals with octahedral symmetry

The ongoing discussion of what causes the low T transport anomaly in ZrAs1.58Se0.39

not only brings out the difficulties involved in disentangling different possible causes for√
T contribution to ρ(T ) at low T , it also indicates that symmetry considerations are

essential in avoiding the difficulties associated with the TLS’s route towards the 2CK

fixed point.

In the context of lanthanide and actinide intermetallics, it has long been speculated

that the unusual metallic behavior displayed by some of these compounds might be

explained in terms of a 2CK lattice [20, 121, 122]. One of the earliest suggestions

along this line was put forth by D. Cox, who suggested that tetravalent Uranium-based

heavy-electron metals like UBe13 may develop a quadrupolar Kondo effect due to orbital

degrees of freedom of the 5f shell of the Uranium ions [123].

One of the common symmetries in crystal structures is related to fourfold rotations
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as well as reflections and leads to the C4ν point group. This group is non-abelian

and possesses a two-dimensional irreducible representation. As a result, the excitation

spectrum of a quantum object placed in a fourfold potential will possess an orbital

degeneracy. We refer to the corresponding basis functions as |Γ2dim+〉 and |Γ2dim−〉
and use |Γ2dimi〉 (i = ±) as components of a pseudospin-1/2 variable. The Great

Orthogonality Theorem ensures that the conduction electron wavefunction at the site

of the quantum impurity, |Ψ〉, can be decomposed in terms of the basis functions of the

irreducible representations as

|Ψ〉 =
∑
Γn′

∑
j′

f
(Γn′ )
j′ |Γn′j′〉 , (17)

where |Γmi〉 denotes the ith basis function of the mth irreducible representation. Since

〈Γnj|Γmi〉 = δm,nδi,j, the pseudospin associated with the two-dimensional representation

is locally conserved. This will ensure the absence of terms that otherwise would be

relevant at the 2CK fixed point and lead to a pseudospin-exchange interaction. The

real spin of the conduction electrons acts as a dummy index which labels different,

degenerate screening channels.

Expanding the conduction electron states around the quantum impurity yields

H = Hloc +Q1

∑
σ

(d†+d+ − d
†
−d−)(c†+,σc+,σ − c

†
−,σc−,σ) (18)

+ ∆1

∑
σ

(d†+d−c
†
−,σc+,σ + d†−d+c

†
+,σc−,σ) +Hadd,

where Hloc contains the local part of the dynamic defect, d†± creates an electron in the

basis state |Γ2dim±〉, c†±,σ is the local conduction electron creation operator projected onto

the basis states of the set of irreducible representations of the local symmetry. The term

proportional to Q1 describes the coupling of the z-component of the pseudospins whereas

∆1 is the (pseudo-) spin-flip component responsible for Kondo-scattering processes. Hadd

contains all additional terms of the Hamiltonian. As the conduction electron spin degree

of freedom σ only enters as an overall summation index and the degeneracy in σ is

protected by time-reversal symmetry, the model is equivalent to the 2CK model. Such

a scenario could be realized in d-electron systems with octahedral symmetry. In such

a material, the octahedral field induces a splitting of the five-fold degenerate state into

t2g and eg orbitals, see Figure 9(a). This symmetry can be further reduced near lattice

defects. For vacancies like the one shown in Figure 9(b) the symmetry is reduced to a

C4ν symmetry (with an axis through the central ion and the vacancy). It is intuitively

clear, that in this situation the orbitals dxz and dyz have to be degenerate. These two

orbitals form the local pseudospin degree of freedom.

The local energetics has to be such, that the effective model of Equation (18) is

placed in its Kondo regime. A realization of this model is expected to display a B-field

independent low T ρ(T ) ∼ T 1/2 anomaly which should be sensitivity to strain. The

effect of strain in this scenario would be similar to that of magnetic fields on a magnetic

Kondo impurity as it will tend to lift the degeneracy of dxz and dyz. The observation of
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2CK and one-channel orbital Kondo physics in transition metal rutile nanowires in line

with such a scenario has recently been reported by S.-S. Yeh et al. [124].

4.8. Single-ion effects and disorder in 4f electron systems

Kondo lattice systems frequently occur in lanthanide-based intermetallics involving

Cerium or Ytterbium and have also been invoked to explain the low-T physics of certain

actinide-based intermetallics containing Uranium ions. In these systems, a local moment

is associated with the 4f or 5f shell.

This raises the question if 2CK lattices in d or f electron systems could form,

generalizing the arguments presented in Section 4.7. In contrast to a standard Kondo

lattice, where the conduction electron band is diagonal in the Kondo-active degree of

freedom, e.g., the electron spin projection, the Kondo exchange interaction in terms of

a pseudospin exchange interaction relies on an expansion of the conduction electrons

at the site of the localized pseudospin degree of freedom. This expansion in terms

of basis functions is in general only locally valid. This should affect the form of the

pseudospin analog of the RKKY interaction, except for the special situations where the

conduction electrons would carry the basis function label as a good quantum number.

This not withstanding, 2CK lattices have been the subject of a number of theoretical

investigations [21, 125, 126].

As far as UBe13 is concerned, the existence of a quadrupolar Kondo effect [123]

could not be confirmed so far. A possible reason might be that in contrast to their 4f

counterparts, 5f orbitals are substantially less localized. As a result, crystal-electric

fields are less-well defined.

Dilution studies as in Ref. [121] to bring out single-ion 2CK physics that may

exist in the dense lattice case encounter yet another difficulty. In Kondo lattices with

disorder in the Kondo exchange coupling, it has been shown that a distribution of

Kondo temperatures P [TK ] can lead to an apparent non-Fermi liquid behavior with

a strong resemblance to the strange metal phase [127, 128, 129]. As Miranda and

co-workers demonstrated, the main ingredient is a P [TK ] that behaves as P [TK ] =

A0 + A1TK + A2T
2
K + . . . for TK smaller than some cutoff Λ. In such a situation, one

expects for the distribution averaged γ coefficient of the specific heat [127]

〈C/T 〉 =

∫ Λ

T

dTK P [TK ]
C0

TK
∼ A0C0 ln

(
Λ/T

)
(19)

for T well below Λ. It can also be shown that ρ(T ) = ρ0 − aT [127]. In certain

materials, e.g., Ge-based filled skutterudites, it has been explicitly demonstrated that

Kondo disorder does indeed lead to a non-Fermi liquid phase at the border of magnetism

[130]. This prompts the question of how to distinguish between disorder- and interaction-

driven non-Fermi liquid phases beyond beyond leading powerlaw behavior in C/T and

ρ(T ); two bulk quantities that are comparatively easy to measure.
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5. Conclusions and Outlook

Motivated by the current interest in singular Fermi liquids and strange metal phases,

I reviewed a range of proposed realizations of the 2CK effect as a route to non-Fermi

liquid behavior. Despite the fact that two-channel Kondo physics is conceptually among

the simplest possible ways of critically destroying a Fermi liquid, its physical realization

rests on a carefully balanced competition between degenerate screening channels. In

engineered semiconductor and metal-hybrid heterostructures which can be meticulously

tuned, this frustrated situation between the screening channels can be ensured for an

intermediate range in energy and temperature. These systems with their high degree

of characterization and control therefore form at present the most clear and perhaps

only commonly accepted realizations of the two-channel Kondo effect. The resulting

characteristic energy scale, i.e., TK of these systems is, however, comparatively small.

In real quantum materials the situation is more complex when it comes to

identifying a two-channel Kondo effect. A Fermi liquid is unstable against disorder

but weak disorder in the metallic host seems unavoidable when attempting to create

two-channel Kondo impurities. Electron-electron interaction effects in the metal then

give rise to the Altshuler-Aronov correction which seems to explain many of the proposed

candidate materials for two-channel Kondo behavior.

A convincing demonstration of two-channel Kondo criticality in a generic quantum

material would require to establish non-Fermi liquid scaling with the anticipated

powerlaw exponents over an extended range in temperature and possibly energy.

Moreover, the host material should only be weakly correlated and not located in

proximity to a phase transition. In order to avoid the emergence of relevant

perturbations, the two-channel scattering centers should be symmetry-protected.

Finally, in order to rule out alternative explanations, a tuning of the two-channel Kondo

state to a one-channel Kondo state displaying Fermi liquid signatures upon breaking the

degeneracy between the two frustrated screening channels, would be desirable.

The best evidence so far for generic two-channel Kondo physics has recently come

from transition metal rutile nanowires [124]. In these systems, a local symmetry

protects orbital two-channel Kondo behavior. In particular, the authors of Ref. [124]

demonstrated that the orbital two-channel Kondo effect can be tuned to its one-channel

counterpart.

An alternative strategy in realizing a two-channel Kondo effect is to employ

its equivalence with other model systems. Buidling on the insight that the Kondo

interaction is confined to the spin sector of the conduction electrons, Eggert and Affleck

showed that magnetic impurities embedded in antiferromagnetic spin-1/2 Heisenberg

chains can be mapped to the two-channel Kondo Hamiltonian [131]. More recently,

Tsvelik and co-workers showed that antiferromagnetic chains coupled to clusters of spin

are equivalent to a multi-channel Kondo model and would allow to access the critical

scaling associated with the multi-channel Kondo effect [132].

The critical physics of the two-channel Kondo model is also equivalent to the Varma-
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Jones quantum critical point [133, 134]. This quantum critical point arises in a two-

impurity Kondo problem [135, 136, 137]. A general difficulty in accessing the critical

point of the two-impurity Kondo model is that a direct coupling between the screening

channels of the two Kondo impurities constitutes a relevant perturbation and drives

the system away from criticality. The two-impurity model has been realized in an

atomic point contact [138] but in such a setup, the tunneling current bypassing the

two molecules must vanish before the critical point can be reached. For a review of

two-impurity Kondo physics in coupled quantum dots, see Ref. [22].

Very recently, it has been argued that a periodically driven Anderson model will

give rise to a two-channel Kondo effect [139]. In Ref. [140] the authors show that a

three-terminal Majorana transistor, a time-reversal invariant topological superconductor

attached to normal leads, can give rise to two-channel Kondo physics without the need

of fine-tuning. Another very promising recent suggestion by Pustilnik and coworkers

to realize the two-channel Kondo effect relies on a mesoscopic s-wave superconductor

in the Coulomb blockade regime and builds on Andreev reflections [141]. Unlike the

two-channel Kondo realizations in semiconductor heterostructures discussed in Section

3.2.2, there is no need for a tiny energy level spacing in this proposed setup.

Ultracold atoms in optically defined lattices have over the last decade demonstrated

their potential as quantum simulator platforms of quantum many-body states [142].

Proposals to simulate the Kondo effect have been around for a few years [143]. These

even include proposals to realize an orbital Kondo effect [144] and while there seems at

present no confirmed realization of Kondo scattering in an ultracold cold atom setting,

this may likely change in the near future [145, 146]. It therefore seems natural and

indeed timely to attempt realizing the two-channel Kondo model using optically defined

lattices.
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[83] S. Kirchner, J. Kroha, P. Wölfle, E. Scheer, Anderson Localization and Its Ramifications, volume

630 of Lect. Notes Phys., chapter Conductance Quasi-quantization of Quantum Point Contacts:

Why Tight Binding Models Are Insufficient, Springer, Berlin, Heidelberg, 2003.

[84] S.-S. Yeh, J.-J. Lin, Phys. Rev. B 2009, 79 012411.

[85] P. w. Anderson, B. I. Halperin, C. M. Varma, Philos. Mag. (1798-1977) 1972, 25, 1 1.



Two-channel Kondo Physics: from Engineered Structures to Quantum Materials Realizations34

[86] D. C. Ralph, A. W. W. Ludwig, J. von Delft, R. A. Buhrman, Phys. Rev. Lett. 1994, 72 1064.

[87] J. von Delft, D. Ralph, R. Buhrman, S. Upadhyay, R. Louie, A. Ludwig, V. Ambegaokar, Ann.

Phys. (Amsterdam, Neth.) 1998, 263, 1 1 .

[88] A. Moustakas, D. Fisher, Phys. Rev. B 1996, 53, 8 4300.

[89] K. Vladár, A. Zawadowski, Phys. Rev. B 1983, 28, 3 1596.

[90] K. Vladár, A. Zawadowski, Phys. Rev. B 1983, 28, 3 1564.

[91] A. L. Moustakas, D. S. Fisher, Phys. Rev. B 1997, 55 6832.

[92] G. Zaránd, A. Zawadowski, Phys. Rev. Lett. 1994, 72 542.

[93] I. Aleiner, B. Altshuler, Y. Galperin, T. Shutenko, Phys. Rev. Lett. 2001, 86, 12 2629.

[94] I. Aleiner, D. Controzzi, Phys. Rev. B 2002, 66, 4 045107.

[95] E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons, Cambridge

University Press, 2006.

[96] P. A. Lee, T. V. Ramakrishnan, Rev. Mod. Phys. 1985, 57 287.

[97] J. J. Lin, J. P. Bird, J. Phys.: Condens. Matter 2002, 14, 18 R501.

[98] B. L. Altshuler, A. G. Aronov, Electron-electron interaction in disordered conductors, book

section 1, North-Holland Physics Publishing, Amsterdam, The Netherlands, 1985.
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